Droppin’ Science on Haters

My two rap-related projects, Raplyzer, which analyzes the rhyme density of different rappers, and DeepBeat, which is a rap lyrics generating AI, were widely covered in the media last year. But with the fame come the haters. The purpose of this post is to prove that my haters are wrong! (For real: I honestly don’t consider anyone a hater, nor will there be any proofs in this post. Rather, I’ll present some quantitative evidence for the validity of the algorithms but also discuss their limitations.)

Continue reading

Who Let the DAGs Out?

We did – in our paper titled “Beyond rankings: comparing directed acyclic graphs” (pdf) which I’ll be presenting at the ECML PKDD conference in Portugal next month. This was the first project of my PhD, but there’s also something else that makes it fundamentally different from the other research projects I’ve been involved with.

Typically, when I undertake a research project, I have a concrete question, like what is the next location a person will visit, to which I start looking for different solutions. In other words, I begin with a nail and start looking for a suitable hammer. However, this time we started by developing a cool new hammer with some neat theoretical properties before we had any idea if a suitable nail even exists. Continue reading

Algorithm That Counts Rap Rhymes and Scouts Mad Lines

“Men lie, women lie, numbers don’t” – Jay Z

Among the many things rappers like to boast about, some are relatively easy to quantify, like money, whereas rhyming skills are something that have been very difficult to measure – up till now. In this post, I’ll present Raplyzer, a computer program which automatically detects rhymes from rap lyrics and which is used to rank popular rappers based on their average Rhyme factor. I’ll also present another program called BattleBot, which is a search engine for rhyming rap lines based on the algorithm used in Raplyzer.

Continue reading

Algoritmil voi saada kiinni / kenel on kovimmat rap-riimit

“Puolet räppäreist ei tajuu rimmaamisest mitään / ennen mikkiin päästämistä pitäis kirjalliset pitää”

Näin toteaa suomiräpin epäilemättä tämän hetken tunnetuin nimi, Cheek, kappaleessaan Kuka muu muka. Tässä kirjoituksessa kuvailen, miten tietokoneella voidaan löytää lyriikoissa esiintyviä riimejä automaattisesti ja tutkin, löytyykö edellä mainitulle Cheekin väitteelle katetta analysoimalla Suomen tunnetuimpien räppäreiden sanoituksia toteuttamallani tietokoneohjelmalla. Ohjelma laskee tunnistamiensa riimien pituuksia sekä arvioi artistin sanavaraston kokoa. Continue reading